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Abstract
Hindsight allows reinforcement learning agents
to leverage new observations to make inferences
about earlier states and transitions. In this pa-
per, we exploit the idea of hindsight and intro-
duce posterior value functions. Posterior value
functions are computed by inferring the poste-
rior distribution over hidden components of the
state in previous timesteps and can be used to
construct novel unbiased baselines for policy gra-
dient methods. Importantly, we prove that these
baselines reduce (and never increase) the variance
of policy gradient estimators compared to tradi-
tional state value functions. While the posterior
value function is motivated by partial observabil-
ity, we extend these results to arbitrary stochastic
MDPs by showing that hindsight-capable agents
can model stochasticity in the environment as a
special case of partial observability. Finally, we
introduce a pair of methods for learning posterior
value functions and prove their convergence.

1. Introduction
Reinforcement learning (RL) is an area of artificial intelli-
gence in which computational agents learn to act in complex
environments through reward and punishment. Many RL
agents work by choosing a sequence of actions and com-
paring the resulting outcome (in terms of rewards) to some
prior expected outcome (called a baseline). Such agents
then alter their behavior to make better-than-expected out-
comes more likely and worse-than-expected ones less so.
To avoid bias, baselines are usually computed in a way that
carefully avoids incorporating any information about the
actual outcome, including anything the agent learns about
the environment after choosing an action. However, in many
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cases, such information can be useful for assessing which
outcomes were likely to have occurred, and failing to use it
can mislead the agent.

For example, consider a morning commute. When you get
into your car, you may expect the drive to take a certain
length of time. This morning, however, you run into traf-
fic on the freeway and discover you will be substantially
delayed in getting to work. If you were an RL agent using
traditional methods, you would respond to this worse-than-
expected outcome by reducing the likelihood of all of the
“actions” that you took prior to encountering the traffic. For
example, you would decrease the probability of using your
turn indicator when approaching the on-ramp. As a human,
you know this is foolish—the traffic was not caused by us-
ing the turn indicator or any other actions you took while
driving (presuming there was no alternate route available!).
Unless you chose to leave earlier, arriving to work late was
inevitable, and your past driving should be evaluated rel-
ative to this new information (the presence of traffic), not
according to the assumptions you made while sitting in
your driveway. The ability to use such information to better
understand earlier circumstances is known as hindsight.

We present a new class of baselines, called posterior value
functions, which exploit the idea of hindsight. We prove
that posterior value functions can reduce the variance of up-
dates to an agent’s behavior (i.e., policy gradient estimators)
compared to standard approaches, while never increasing
variance or introducing bias. We analyze the resulting vari-
ance in detail and show using several examples that the
improvement can be large. We introduce efficient methods
for learning posterior value functions through interactions
with the environment and prove that they converge almost
surely. Finally, we illustrate these results empirically.

2. Background and Notation
In RL, the environment is typically represented as a
Markov decision process (MDP). An MDP is a tuple,
(S,A, P,R, d0), where S is the set of possible states, A
is the set of possible actions, R : S ×A → R is the reward
function, P : S ×A× S → [0, 1] is the transition function,
and d0 : S → [0, 1] is the initial state distribution.
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The MDP framework can be extended to encompass the
problem of partial observability, in which not all parts of S
are visible to the agent. An MDP with partial observability
is called a partially observable Markov decision process
(POMDP). We break the state set into two components, S =
O ×Z , where O is the set of observations and Z is the set
of hidden components of the state. The difference between
a POMDP and an MDP is that in a POMDP, the agent may
only consider the observable component. This formulation
of POMDPs differs slightly from the standard formulation
(Puterman, 2014), but is of equivalent descriptive power.1

Interactions with the environment are broken into discrete se-
quences called episodes. Each episode is further divided into
integer timesteps in the range [0,∞). The state at each time
t is denoted by the random variable St, with observation Ot
and hidden component Zt; that is, St = (Ot, Zt). Similarly,
the action at time t is denoted by At and the reward by Rt.
Each episode begins at timestep t = 0. An initial state is
sampled, S0 ∼ d0(·). The agent then observes Ot and se-
lects some At. Finally, the next state, St+1 ∼ P (St, At, ·),
and reward, Rt, is generated by the environment such that
E[Rt|St, At] = R(St, At). The episode terminates when
the agent enters a special state, s∞, called the terminal ab-
sorbing state. The history, H , for a given episode describes
the complete sequence of interactions as observed by the
agent, i.e.,H := (O0, A0, R0, O1, A1, R1, . . . , s∞). A par-
tial history, Ht, describes the sequence of interactions until
a given timestep, including the current observation. That is,
for t > 0, Ht := (O0, A0, R0, . . . , Ot), and H0 := (O0).

The return, Gt =
∑∞
k=0Rt+k, is the sum of rewards start-

ing at a given timestep. We note that if for all timesteps,
Rt ∈ [−Rmax, Rmax] for some finite constant Rmax, and the
probability of the episode ending satisfies

∑∞
t=0 Pr(St 6=

s∞) < ∞, then Pr(Gt < ∞) = 1. In this paper, we al-
ways assume that these conditions hold. One special case of
the above is the finite horizon setting, in which there exists
some T such that for all t > T , Pr(St = s∞) = 1.

2.1. The Policy Gradient Theorem

One way of selecting At is by sampling from a stochas-
tic policy, πθ : O × A → [0, 1], where θ is a parame-
ter vector, e.g., the weights of a neural network, such that
πθ(Ot, At) = Pr(At|Ot, θ). From here on, it should be as-
sumed that all random variables, expectations, and variance
expressions are conditioned on θ unless otherwise specified.
The goal of the agent is to find the parameter vector θ that
maximizes the objective function, J(θ) := E[G0]. Policy
gradient methods are a class of methods for maximizing
J(θ). The policy gradient theorem (Sutton et al., 1999)

1See the supplemental materials for more details.

gives an ascent direction for θ:

∇J(θ) = E

[ ∞∑
t=0

Gt
∂ lnπθ(Ot, At)

∂θ

]
. (1)

∇J(θ) can be estimated by executing πθ for an entire
episode and computing the inner expression of (1). We
can then update θ using stochastic gradient descent:

θ ← θ + αk

∞∑
t=0

Gt
∂ lnπθ(Ot, At)

∂θ
, (2)

where αk is the kth element in a sequence of non-negative
step sizes. For a properly decaying sequence, this update
provides the standard convergence guarantees of stochas-
tic gradient descent (Bertsekas & Tsitsiklis, 2000). These
results can be extended to the case where Ot is replaced
with a learned representation, e.g., the output of a recurrent
neural network (Wierstra et al., 2010).

2.2. Variance of the Sample Policy Gradient

The quantity Gt
∂ lnπθ(Ot,At)

∂θ is known as the sample gradi-
ent. Notice that the sample gradient is a random vector. We
consider the following scalar notion of variance:

Var( ~X) := E
[
( ~X − E[ ~X])>( ~X − E[ ~X])

]
. (3)

This quantity is recognizable as the trace of the covariance
matrix, and may also be understood as the expected value of
the square of the Euclidean distance between ~X and E[ ~X].
Similarly, we define the conditional variance of ~X given
some other random variable, Y , to be:

Var( ~X|Y ) := E
[
( ~X−E[ ~X|Y ])>( ~X−E[ ~X|Y ])

∣∣Y ]. (4)

Finally, the covariance of ~X and ~Y is:

Cov( ~X, ~Y ) := E
[
( ~X − E[ ~X])>(~Y − E[~Y ])

]
. (5)

2.3. Baselines in Policy Gradient Methods

Due to stochasticity in both the environment and the policy,
the variance of (2) can be large, resulting in slow conver-
gence. One way of reducing that variance is by introducing
a baseline (also known as a control variate), which we write
as Bt, resulting in the update:

θ ← θ + α

∞∑
t=0

(Gt −Bt)
∂ lnπθ(Ot, At)

∂θ
. (6)

The quantity Gt −Bt is sometimes known as an advantage
estimator, as it estimates the “advantage” of choosing action
At and receiving Gt compared to the baseline. If Bt is
sufficiently correlated with Gt, then the variance of the
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resulting update is decreased compared to (2). Specifically,
the total variance is reduced if and only if:

2Cov

(
Gt
∂ lnπθ(Ot, At)

∂θ
,Bt

∂ lnπθ(Ot, At)

∂θ

)
>

Var

(
Gt
∂ lnπθ(Ot, At)

∂θ

)
+Var

(
Bt
∂ lnπθ(Ot, At)

∂θ

)
.

However, Bt must be chosen carefully to avoid introducing
bias. The most common choice of Bt is the state value func-
tion, vθ(St) := E[Gt|St], which often provides a significant
amount of variance reduction without introducing bias. In
general, it can be shown that using any function of St (and
any other information available to the agent prior to time
t) as a baseline will never introduce bias (Williams, 1992;
Baxter & Bartlett, 2001).

In the partially observable setting, St is not known by the
agent, so the “true” state value function is often replaced
with what we refer to as the prior value function, vθ(Ht) :=
E[Gt|Ht], which is an agent’s best estimate of the future
return based on the partial history Ht. In many cases, this is
approximated by the observation value function, vθ(Ot) :=
E[Gt|Ot], which is likewise an unbiased baseline. If Ot is
a representation learned by a recurrent neural network, it
may be the case that vθ(Ot) ≈ vθ(Ht). However, note that
Ht contains Ot, so vθ(Ht) is strictly more informative. A
glossary of value functions can be found in Table 1.

2.4. Future-Dependent Baselines

Variance can in some cases be further reduced using a future-
dependent baseline, which is any baseline incorporating At,
Rt, St+1, or any other information available after time t.
However, future-dependent baselines must be constructed
carefully to avoid introducing bias. For example, consider
the baseline Bt = Gt. The variance of the resulting update
is zero, but only because the update (i.e., (6)) is always the
zero vector. Because in most cases∇J(θ) 6= 0, this baseline
is almost always extremely biased and is never useful, in
spite of its low (zero) variance.

Action-dependent baselines are a class of unbiased future-
dependent baselines that depend on both St and At; various
forms have been proposed (Gu et al., 2016; Thomas & Brun-
skill, 2017; Liu et al., 2017; Wu et al., 2018). While these
methods showed initial promise, they were later argued to
be a “mirage” (Tucker et al., 2018) offering little benefit
over state-dependent baselines. One reason cited by Tucker
et al. (2018) is that, empirically, At usually only accounts
for a small portion of E[Var(Gt|St)]; that is, in most cases:

E[Var(Gt|St)]� E[Var(E[Gt|St, At]|St)]. (7)

The new future-dependent baselines that we introduce next
depend on the entire history, H , allowing them to achieve
large variance reduction compared to existing baselines.

Function Value Name

vθ(Ot) E[Gt|Ot] Observation Value Function
vθ(Ht) E[Gt|Ht] Prior Value Function
vθ(St) E[Gt|St] State Value Function
uθt (H) E[vθ(St)|H] Posterior Value Function

Table 1. Glossary of value functions.

3. The Posterior Value Function
We begin by considering the partially observable setting.
Notice that in this setting, the state value function cannot
be used as a baseline in practice because the state contains
hidden components. However, an agent may be able to make
inferences about these hidden components as an episode
progresses. At the end of an episode, suppose we consider
an agent’s “best guess” of the state value function at an
earlier timestep, t, based on everything it has seen. We refer
to the resulting quantity as the posterior value function:

uθt (H) := E
[
vθ(St)|H

]
. (8)

Recall that St comprises both the observable and hidden
components, (Ot, Zt), whereas H contains only the observ-
able components, actions, and rewards. Therefore, when
conditioning on H , Ot is known but Zt is uncertain. There-
fore, another way of writing the posterior value function is:

uθt (H) =
∑
z∈Z

Pr(Zt = z|H)vθ(Ot, z). (9)

We call this quantity the “posterior value function” due its
dependence on the posterior distribution over Zt given H .
We can immediately prove the resulting advantage estimator
has generally lower variance than the standard estimators:

Theorem 1. For all POMDPs and all timesteps, t:

Var(Gt − uθt (H)) ≤ Var(Gt − vθ(St))
≤ Var(Gt − vθ(Ht)) ≤ Var(Gt − vθ(Ot))

Proof. See the supplemental material.

To ground the posterior value function and its variance re-
duction properties in a concrete example, we elaborate on
the traffic example discussed earlier. The traffic problem
can be modeled as the five-state POMDP shown in Figure 1.
Each state is labeled with an observable component, o, and
a hidden component, z. The agent always starts at Home,
however, there is a 1/2 probability that, unbeknownst to the
agent, there is traffic on the road. The traffic is not directly
observable at Home, so it is part of the hidden state at Home,
but part of the observed state while on the Road. If there is
traffic, the agent arrives to work late and receives a reward



Posterior Value Functions

Baseline Variance Reduction

0 Var(Gt) –
vθ(Ot) E[Var(Gt|Ot)] Var(vθ(Ot))
vθ(Ht) E[Var(Gt|Ht)] E[Var(vθ(Ht)|Ot)]
vθ(St) E[Var(Gt|St)] E[Var(vθ(St)|Ht)]
uθt (H) Var(E[Gt − vθ(St)|H]) E[Var(vθ(St)|H)]

Table 2. The variance and variance reduction in the advantage
estimator, Gt −Bt, achieved by each baseline. The third column
indicates the difference between the variance of the estimator on
the previous row and the current row, from top to bottom. Proof of
these results can be found in the supplemental material.

of −1. If the roads are clear, the agent arrives on time and
receives a reward of +1. The agent does not have any choice
of action; it must go to work and only one route is available.
We are sure many readers can sympathize.

First, consider the variance of the advantage estimator de-
rived from the prior value function, vθ(Ht). The partial
history in the initial state, H0, will contain only the initial
observation, O0 = Home, so vθ(H0) = vθ(Home) = 0,
always. Therefore, Var(G0 − vθ(H0)) = Var(G0) = 1.

Next, consider the advantage estimator derived from the pos-
terior value function, which we call the posterior advantage
estimator. There are only two possible values of H , one
which contains traffic, which we call htr, and one in which
the road is clear, which we call hcl. Given htr, we know that
Z0 = Traffic with probability 1, and given hcl, we know
that Z0 = Clear, therefore:

uθ0(htr) = vθ
(
Home, Traffic

)
= −1

uθ0(hcl) = vθ
(
Home, Clear

)
= 1.

E[G0 − uθ0(H)] = 0, so the variance of the posterior advan-
tage estimator at time 0 is:

Var(G0 − uθ0) =E
[(
G0 − uθ0(H)

)2]
= Pr(H = htr)(−1− vθ0(htr))

+ Pr(H = hcl)(1− vθ0(hcl))

=
1

2
((−1)− (−1))2 +

1

2
(1− 1)2 = 0.

The posterior advantage estimator achieves a variance of
0. Additional details can be found in Figure 3. While it is
easy to show that the variance of the posterior advantage
estimator is 0 for this particular POMDP, the variance is
not zero for all POMDPs. Nevertheless, Theorem 1 shows
that variance is always less than or equal to that of standard
advantage estimators. Further comparisons of the variance
of these estimators are given in Table 2.

Figure 1. POMDP representation of the traffic example.

Trajectory G0 uθ0(H) vθ(H0) G1 uθ(H) vθ1(H1)

Traffic −1 −1 0 −1 −1 −1
Clear 1 1 0 1 1 1

Table 3. Comparison between the return Gt, the posterior value
function uθt (H), and the prior value function vθ(Ht) at each time
step and for each possible trajectory in the traffic POMDP pre-
sented in Figure 1.

3.1. Comparison to the State Value Function

In the traffic example, the posterior advantage estimator
achieved lower variance than the advantage estimator de-
rived from the prior value function (the prior advantage
estimator). This is an important comparison because in
POMDPs the state value function is not computable as the
agent does not know the state’s hidden components, making
the prior value function the next best option. However, in
this section, we go further and discuss how the posterior
value function can produce a lower variance estimator than
even the state value function. From Table 2, we know:

Var
(
Gt−uθt (H)

)
−Var

(
Gt−vθ(St)

)
=E[Var(vθ(St)|H)].

This expression tells us that if there are multiple possible
values of Zt given H , and these values correspond to dif-
ferent values of vθ(St), then this uncertainty in Zt will
contribute to Var(Gt − vθ(St)). In comparison, the poste-
rior value function averages over these different values of
Zt, eliminating this source of variance.

This particular source of variance did not appear in the traffic
example. However, in Figure 2, we provide an example of a
POMDP where it figures prominently. In this example, the
agent again has no choice of action. The agent begins in
a state with observation o0 and no hidden component, and
then transitions to a state with observation o1 with a hidden
component of either z1 or z2, each with 50% probability.
Finally, the agent transitions to one of three terminal states
and receives a reward of −100, 0, or +100. If the hidden
component is z1, it receives a reward of −100 or 0 with a
50% chance each, and if the component is z2, it receives
a reward of 0 or 100 with a 50% chance each. The value
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Figure 2. A POMDP wherein the posterior value function de-
creases the variance of the advantage estimator relative to the
state value function.

Trajectory G0 uθ0(H) vθ(S0) vθ0(H0)

o0, o1, z1, o2 −100 0 0 0
o0, o1, z1, o3 0 0 0 0
o0, o1, z2, o3 0 0 0 0
o0, o1, z2, o4 100 0 0 0

Trajectory G1 uθ1(H) vθ(S1) vθ1(H1)

o0, o1, z1, o2 −100 −50 −50 0
o0, o1, z1, o3 0 0 −50 0
o0, o1, z2, o3 0 0 50 0
o0, o1, z2, o4 100 50 50 0

Table 4. Comparison of baselines for POMDP in Figure 2.

estimates for the posterior, state, and prior value functions
for each possible trajectory are given by Table 4.

The key in this example is that the agent is only able to
uniquely identify the state entered at t = 1 when a reward
of −100 or +100 is received. In these cases, the posterior
value function is equivalent to the state value function and
produces the same conditional variance, with an absolute
error of 50. However, consider the history when a reward of
0 is received: the agent is not able to determine whether the
hidden component is z1 or z2. For time t = 1, the posterior
value function averages over these two possibilities and
produces an estimate of 0, which in this case is exactly the
return G1, resulting in a conditional variance of 0. The state
value function, however, will produce an estimate of either
−50 or 50, depending on the value of the hidden component,
significantly deviating from the true return in either case. In
Section 4.1, we will show how it is possible to lower the
variance even further, resulting in a total variance of 0.

4. The Posterior Policy Gradient Estimator
If we use uθt as a baseline in the policy gradient theorem, we
are given what we refer to as the posterior policy gradient
estimator. We begin by proving that the expected value
of this expression is the policy gradient, ∇J , i.e., that the

uθt (H) baseline does not introduce bias.

Theorem 2. (Posterior policy gradient): For any POMDP:

∇J(θ) = E

[ ∞∑
t=0

(
Gt − uθt (H)

)∂ lnπθ(Ot, At)

∂θ

]
.

Proof. See the supplemental material.

Consider that the posterior value function is an expectation
over the state value function, i.e., E[vθ(St)|H]. Therefore,
the only information the agent uses when constructing it is
regarding St. It is well known that any function of St can
be used as a baseline without introducing bias (Williams,
1992). In fact, the proof of Theorem 2, after a few transfor-
mations, reduces to the proof that the vθ(St) baseline does
not introduce bias. We encourage the reader to study the full
proof of Theorem 2 in the supplemental material. Recall
that the goal of incorporating hindsight into our baseline
is to reduce the variance of the policy gradient estimator.
Theorem 3 shows the posterior value function achieves this:

Theorem 3. For all POMDPs and all timesteps, t:

Var

((
Gt − uθt (H)

)∂ lnπθ(Ot, At)

∂θ

)
≤Var

((
Gt − vθ(St)

)∂ lnπθ(Ot, At)

∂θ

)
.

Proof. See the supplemental material.

Thus, we have achieved the main results. In Section 6,
we demonstrate the above variance reduction empirically.
However, first we ask, can we take it even further?

4.1. The Off-POMDP Estimator

Are different ways of looking at the world equally valid?
If they are equally valid, are they equally “good” from the
perspective of an RL agent? In Section 3, we introduced the
posterior value function, and in Section 4, we showed how it
could be used as a baseline to reduce the variance of the pol-
icy gradient estimator. In this section, we show in Theorem
4 that there is not one but many posterior value functions
that serve as unbiased baselines for any POMDP. Further,
we find that any such posterior value function reduces the
variance of the resulting advantage estimator compared to
the prior value function.

This has the important implication that, in practice, an agent
need not learn the posterior of the “true” POMDP, but need
only learn the posterior of some POMDP that satisfies the
conditions laid out in Theorem 4. This greatly improves the
practicality of learning a suitable posterior value function,
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because the agent does not need to model the true posterior,
which may require prior knowledge, but rather need only
learn some sufficient model of the posterior. We have:

Theorem 4. Consider two POMDPs, M =
(S,A, P,R, d0) and M̃ = (S̃,A, P̃ , R̃, d̃0), such that
S = O ×Z and S̃ = O × Z̃ , and where the observations,
actions, rewards, and histories in M̃ are given by Õt, Ãt,
R̃t, and H̃t respectively. If for all observations o in O:

Pr(O0 = o) = Pr(Õ0 = o) (10)

and for all partial histories h = (o0, a0, r0, . . . , ot), h′ =
(o0, a0, r0, . . . , ot+1), and actions a in A:

Pr(Ht+1 = h′|Ht = h,At = a) (11)

= Pr(H̃t+1 = h′|H̃t = h, Ãt = a),

then:

∇J(θ) = E

[ ∞∑
t=0

(Gt − ũθt (H))
∂ lnπθ(Ot, At)

∂θ

∣∣∣∣∣θ
]
,

(12)
where J is the objective for M and ũθt is the posterior value
function for M̃ .

Proof. See the supplemental material.

The critical insight in Theorem 4 is that there is a class
of POMDPs satisfying the given conditions, and that from
the perspective of an agent, these POMDPs are indistin-
guishable from the true POMDP. Informally, the proof is
as follows: Let J̃ be the objective for M̃ . Because any two
POMDPs satisfying 10 and 11 are indistinguishable, J(θ)
and J̃(θ) are equivalent. Therefore, because ũθt (H) is an
unbiased baseline for∇J̃(θ), it is also an unbiased baseline
for ∇J(θ).

Similarly, vθ(Ht) = ṽθ(Ht), so the variance reduction
property from Theorem 3 holds transitively. That is:

Theorem 5. Let M be a fully observable MDP, and let
M̃ = (S̃,A, P̃ , R̃, d̃0) be any POMDP satisfying (10) and
(11). Then, for all t:

Var(Gt − ũθt (H)) ≤ Var(Gt − vθ(Ht)).

Proof. See the supplemental material.

4.2. The Fully Observable Setting

To this point, we focused primarily on how posterior value
functions could be used to reduce variance resulting from
partial observability. How could it be useful in fully ob-
servable settings, where the state has no hidden component?
The key observation is that Theorem 4 can be used to draw a
relationship between partial observability and stochasticity:

Figure 3. A fully observable version of the traffic problem from
Figure 1 satisfying Theorem 4. The hidden component of the state
is replaced with a stochastic transition.

Trajectory G0 uθ0(H) vθ(H0) G1 uθ(H) vθ1(H1)

Traffic −1 0 0 −1 −1 −1
Clear 1 0 0 1 1 1

Table 5. Comparison between the return Gt, the posterior value
function uθt (H), and the prior value function vθ(Ht) at each time
step and for each possible trajectory in the traffic POMDP pre-
sented in Figure 3. Note that unlike in Figure 3, the posterior value
function offers no improvement over the prior value function.

from the perspective of the agent, partial observability may
be modeled as stochasticity and vice versa without introduc-
ing bias. By choosing to model stochastic events as a special
case of partial observability, the agent may apply hindsight
to produce a variance-lowering posterior value function.

Consider again Figure 1. In order to reduce the variance of
the advantage estimator, we modeled the traffic as a hidden
component of the state that was present even when the agent
was sitting at Home. Consider how the traffic problem can
be alternately modeled as a fully observable problem while
satisfying Theorem 4: Instead of treating the traffic as a
hidden component of the state, we can treat the transition
from Home to Road as a stochastic transition, as shown in
Figure 3. First, we remove the hidden component from the
initial states, leaving just one initial state, Home. Then, we
add transitions from Home to (Road, Traffic) and
(Road, Clear), each with a transition probability of
50%. It is easily seen that the conditions given by (10) and
(11) are satisfied by the resulting MDP. However, notice
that because the hidden state at time 0 is empty, we now
have uθ0(H) = 0 in all cases. Because our reward is either
1 or −1, the variance of the posterior advantage estimator
at time 0 is now 1, whereas previously it was 0. The agent
was better served by modeling the “random” appearance of
traffic as partially observable.

Many types of stochasticity can be modeled this way: the
agent may treat the outcome of a seemingly random dice
roll or coin flip as preordained and will be rewarded with a
lower variance advantage estimator. We show in Corollary
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1 that, from this perspective, the fully observable stochastic
formulation is always the worst possible formulation, and
any valid hindsight model is at least as good.
Corollary 1. Let M be a fully observable MDP, and let
M̃ = (S̃,A, P̃ , R̃, d̃0) be any POMDP satisfying (10) and
(11) for M . Then, for all t:

Var(Gt − ũθt (H)) ≤ Var(Gt − uθt (H)).

Proof. In the fully observable setting, we have:

uθt (H) = vθ(St) = vθ(Ht),

by the Markov property. Therefore, the statement holds by
Theorem 5.

In general, we suggest that when learning a hindsight model,
an agent should attempt to minimize the stochasticity of the
resulting model and account for as much of it as possible
using partial observability in order to maximize the benefits
of posterior value functions.

5. Learning Posterior Value Functions
In this section, we present methods for learning posterior
value functions from data. We assume that the agent pos-
sesses a hindsight model for each timestep, qt(z|H) :=
Pr(Zt = z|H), that satisfies (10) and (11). One way of esti-
mating the posterior value function is to learn an estimate,
v̂(Ot, Zt), of the state value function.2 We can then form
an estimate, ût(H), of uθt (H) as

ût(H) =
∑
z∈Z

qt(z|H)v̂(Ot, z). (13)

The problem is then reduced to learning v̂. However, we
cannot use standard methods for this as we still cannot ob-
serve Zt directly. Instead, we need to leverage our hindsight
model to perform weighted updates for all values of Zt
with non-zero probability conditioned on H . Consider a
sequence, (v̂0, v̂1, . . . ), such that v̂i is the estimate of the
value function at the beginning of the ith training episode.
At the end of each episode, we update for all z ∈ Z:

v̂i+1

(
Ot, z

)
= v̂i

(
Ot, z

)
+ αiqt

(
z|H

)(
Gt − v̂i(Ot, z)

)
,

(14)
where αi is a positive learning rate satisfying

∑∞
i=0 αi =∞

and
∑∞
i=0 α

2
i <∞, and all random variables are sampled

from the ith episode. We then have:
Theorem 6. For any POMDP, let ût,i(H) :=∑̂

zqt(z|H)v̂i(Ot, z), where vi is the ith element in
the sequence defined by (14). Then, for any history h such
that Pr(H = h|θ) > 0 :

Pr
(

lim
i→∞

ût,i(h) = uθt (h)
)

= 1.

2Recall that the state space is S = O ×Z .

Proof. See the supplemental material.

Computing the above expression is tractable where |Z|
is small. However, as the update scales with O(|Z|), if
|Z| is very large, it may quickly become infeasible. In
these cases, we instead consider computing some sufficient
statistic, φt, for Zt given H . For such a statistic, trivially,
E[vθ(St)|φt] = E[vθ(St)|H]. Further, we assume that
we are able to generate samples, Z̃, such that for all z,
Pr(Z̃ = z|φt) = Pr(Z = z|φt).

We may then perform the following update once per episode:

v̂i+1

(
Ot, Z̃t)=v̂i

(
Ot, Z̃t

)
+ αi

(
Gt − v̂i(Ot, Z̃t)

)
(15)

ûi+1

(
Ot, φt

)
=ûi

(
Ot, φt

)
+ βi

(
v̂i(Ot, Z̃t)− ûi(Ot, φt)

)
,

(16)

where the above conditions for learning rates αi and βi are
satisfied and additionally, limi→∞

αi
βi

= 0. The complexity
of this more efficient update is O(1), making it tractable
even for large |Z|. Finally, we have:

Theorem 7. For any POMDP, let ûi be the ith element in
the sequence defined by (16). Then:

Pr
(

lim
i→∞

ûi(Ot, φt) = uθt (H)
)

= 1.

Proof. See the supplemental material.

Both of the above techniques, with small modifications, can
be implemented using function approximation. However,
as with other techniques, unless the network is overparame-
terized (Allen-Zhu et al., 2019), they may not converge to
exact solutions.

6. Experiments
We further illustrate the variance reduction properties of pos-
terior value functions on a tabular gridworld domain with
partial observability. We compared agents using learned esti-
mates of the posterior, prior, and observation value functions
as baselines for the policy gradient theorem. The agents
used either a “reactive” policy, which considered only the
current position on the grid, or a “belief” policy, which
conditioned the action on an analytically computed belief
distribution based on the partial history. The policies were
trained using the standard REINFORCE with baselines algo-
rithms (Williams, 1992). The posterior value function was
learned using Equation 14. The full experimental details are
in the supplemental material.

The environment is a composition of the four 5×5 grid-
worlds shown in Figure 5. The agent always starts in the top
left square, {0, 0}, and the episode terminates upon reach-
ing the bottom right square, {4, 4}. At the beginning of
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Figure 4. The performance of six different REINFORCE agents
on a 5 × 5 tabular gridworld with partial observability, in terms
of the mean episode returns and the estimated mean squared error
of the advantage estimator, E[(Gt − Bt)

2]. The results were
averaged over approximately 300 trials per agent. The shaded
regions indicate the standard error.

each episode, the agent is placed randomly in one of the
four gridworlds with equal probability. The agent can move
up, down, left, or right, moving one square at at time and
transitions are fully deterministic. The agent must explore
in order to deduce which gridworld it is in during a given
episode. The maximum reward varies, so the value of early
states can only be determined using hindsight.

We ran each of the six agents for twenty thousand episodes
on the partially observable gridworld. We compared the
returns and estimated the variance of the advantage function
for each agent. The variance was estimated by the sample
mean squared error for the advantage estimator, E[(Gt −
Bt)

2]. Results during individual trials were averaged over
100 episode chunks. The results were then averaged over
300 trials and are shown in Figure 4.

The agents using the posterior value function baselines pro-
duced drastically lower variance advantage estimates than
the agents using the prior or observation value functions,
illustrating that the variance reduction achieved due to The-
orem 1 can be non-trivial. However, the agents using the
belief policy trained with the prior and posterior value func-
tion baselines achieved essentially equal returns.

7. Discussion and Future Work
The results derived in this paper suggest that posterior meth-
ods possess fundamental advantages over existing methods
in a broad range of settings. We showed that in many set-
tings, it is not possible to generate low-variance advantage
estimates without the benefit of hindsight. We introduced
an approach for doing so which is both intuitive and well-
principled. However, we refrained from proposing a spe-

Figure 5. Depiction of the four gridworlds in which the agent could
find itself. White tiles are passable. Gray tiles are impassable walls.
The agent begins in the tile marked by s0 and terminates in the
green tile. Rewards are zero except where noted.

cific end-to-end RL algorithm in order to focus on the more
fundamental insights discussed herein. Translating these
theoretical insights to empirical benefits is left as future
work.

One of the most interesting connections uncovered by these
results is the deep connection between RL and inference. In
many practical settings, estimating and learning the poste-
rior value function requires learning a hindsight inference
model, q(z|H). The study of methods for finding approxi-
mate solutions for such problems is a subfield of machine
learning called variational inference (VI). While applica-
tion of VI to hindsight inference is a compelling problem
in and of itself, the methods introduced in this paper offer a
practical reason to study agents that blend VI and RL.

The results presented in Section 4.2 may provide new insight
into “hindsight bias” or “creeping determinism” (Fischhoff,
1975), the observation that humans tend to overestimate the
predictability of past events. Our results suggest that model-
ing stochastic events as deterministic events dependent on
hidden information has beneficial variance-reducing prop-
erties for agents. This result is consistent with the causal
model theory (CMT) of hindsight bias (Nestler et al., 2008),
which argues that hindsight bias emerges as a consequence
of an internal motivation to explain the outcome of given
events, as opposed to memory-related distortions or errors.
Variance reduction in learning processes provides a plau-
sible evolutionary advantage that could support the CMT.
Further exploration of this connection could be an interest-
ing avenue for future research.

8. Related Work
There has been a great deal of work on reducing the variance
of policy gradient methods through various means; however,
the posterior value functions introduced here appear to be
novel. The related literature on RL, POMDPs, and value
function learning is too extensive to cover exhaustively, but
we will try discuss the work we feel is most closely related.

The approach most similar to ours is the concurrent work
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on counterfactual credit assignment (CCA) (Mesnard et al.,
2020). Like our approach, CCA attempts to extract fu-
ture information from a trajectory using a future-dependent
value function, in our notation, vθ(Ot,Φt) := E[Gt|Ot,Φt],
where Φt is some sufficient statistic over future events that
is independent of At. vθ(Ot,Φt), like posterior value func-
tions, is shown to reduce (and never increase) the variance of
the policy gradient estimator compared to vθ(Ot). However,
posterior value functions differ in that the statistics over Zt
need not be independent of At. Further, the independence
maximization algorithm the authors introduce contrasts with
the inference-based approach discussed herein.

There have been several other recent works involving the
idea of hindsight. Hindsight credit assignment (Harutyun-
yan et al., 2019) is a method that attempts to determine the
impact of a particular action on the likelihood of the agent
finding itself in a particular state, and credits the action
with the resulting returns in proportion to this likelihood.
Hindsight value modeling (Guez et al., 2020) is superficially
similar to our approach, but rather than using the features
of the future trajectory (which are similar conceptually to
our Zt) to construct a control variate directly, an estimate of
these features is made using only the information available
at t and the control variate is constructed using this estimate.

Another related area is Bayesian RL, which was surveyed
by Ghavamzadeh et al. (2016). Bayesian RL is a broad
area, but methods typically involve maintaining a posterior
distribution over some entity, such as a model of the MDP
or the value function, with the goal of identifying the MDP
(Osband et al., 2013) or value function (Eriksson et al., 2020)
associated with the environment after many episodes.

9. Conclusions
We derived posterior value functions, a new class of value
functions which use hindsight in order make better infer-
ences about the value of previous states. We showed how
posterior value functions can be used to reduce the vari-
ance of policy gradient estimators without introducing bias.
We analyzed the variance of several advantage estimators
and showed how posterior value functions are able to elim-
inate several common sources of variance. Further, we
showed that by modeling stochasticity in the environment
as a special case of partial observability, posterior value
functions are able to reduce variance even in settings which
are generally considered fully observable. We introduced a
pair of methods for learning posterior value functions, and
demonstrated their properties on a simple tabular problem.
Finally, we suggested several future directions for research,
including connections with other areas such as variational
inference and human psychology.
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